
Summer Internship Report

2022

Vemuganti Sesha Satvik, Ravikant Gautam

August 16, 2022

Guided By: Dr. Mayank Swarnkar

1 Abstract

The number of smartphone users worldwide has significantly expanded, and so
have the number of attacks on these devices. There have been numerous protec-
tion strategies for Android malware detection, but the majority of them do not
provide early malware detection. As a result, there is a pressing need to develop
a system to detect dangerous software before using the data. Another signifi-
cant issue is achieving high accuracy in detecting Android malware traffic. This
study systematically presents the issue beginning with a brief understanding of
the system architecture of Android followed by various classifications of Android
Malware. The study began with an exploration of tools such as Wireshark and
Scapy and consisted of reconstructions of existing Android Malware detection
and classification techniques using Deep Learning.

2 Introduction

Since its debut in 2008, Android has overtaken all other mobile operating sys-
tems in terms of popularity. About 85% of smartphones sold in 2021 were
Android-based. The official marketplace for Android apps, Google Play, had
more than 2.8 million apps available at the end of April 2020. Numerous secu-
rity attack surfaces exist, which substantially jeopardise the integrity of Android
programmes because of a variety of reasons, including the open ecology mode
of Android applications, its coarse-grained permission control, and its ability to
invoke third-party code.

According to prior research, there are three forms of Android malware detection
technology: static detection, dynamic detection, and hybrid detection. Static
detection relies on questionable code analysis without the Android application
being executed. Although it can achieve great code coverage, there are vari-
ous barriers to it, including dynamic code loading and code obfuscation. On

1



the other hand, dynamic detection entails running the code and analysing the
Android application. This can reveal dangers that are difficult to find through
static analysis, but dynamic detection requires a lot of processing power and
takes a lot of time. In order to balance the effectiveness and efficiency of detec-
tion, the hybrid detection approach combines static and dynamic detection.

In the identification of Android malware, machine learning theory is frequently
used, whether it is based on static, dynamic, or hybrid analysis methodologies.
Machine learning-based malware detection has the capacity to identify previ-
ously unknown types of malware and can perform better in terms of detection
efficacy and efficiency compared to traditional methods like signature-based mal-
ware detection, which is based on identifying specific patterns of known malware.
Machine learning-based methods for detecting Android malware have been cov-
ered in some prior publications.

Achieving high accuracy in detecting android traffic has been a critical issue.
Gohari et. al. [1], 2021, suggests a deep learning approach for detecting Android
malware using network traffic data. Data preprocessing is frequently required
for machine learning methods, however this preprocessing takes time. Deep
learning algorithms work well for malware detection issues and eliminate the
requirement for data preprocessing. This paper presents a technique to extract
local features from network flows using the one-dimensional CNN, and then use
LSTM to identify the sequential link between the important features. In order
to detect android malware, the real-world dataset CICAndMal2017 with net-
work traffic features was used to train the model. The model achieves 99.79%
accuracy in binary classification, 98.90% in category classification, and 97.29%
in family classifications.

3 Literature Survey

The following articles were surveyed during the internship.

Li et. al [2] introduces a Significant Permission IDentification (SigPID) in this
work, a malware detection method based on permission usage analysis. The pa-
per proposes three stages of trimming by mining the permission data to find the
most important permissions that can be useful in differentiating between benign
and malicious apps, as opposed to extracting and analysing all Android permis-
sions. The research finds that SigPID is more efficient than other cutting-edge
methods, detecting 93.62% of the dataset’s malware and 91.4% of the samples
that are unknown or new.

Lopes et al. [3] (Overview of machine learning methods for Android malware
identification) provides an overview of the current machine learning methodolo-
gies for mobile malware detection based on static, dynamic, and hybrid analysis.
It also presents the benefits and drawbacks of each strategy and makes compar-

2



isons between them.

The comparison of various static and dynamic analysis methodologies for An-
droid malware is highlighted in Choudhary and Kishore [4] 2018, HAAMD:
Hybrid Analysis for Android Malware Detection. The study discusses the com-
parative data between these two types of analysis and also accommodates several
sub-approaches of these analysis techniques with their functionality employed
for malware detection. In this study, a new technique known as hybrid anal-
ysis—a combination of static and dynamic analysis—has been developed. The
effectiveness of this new technique is then compared to that of already-in-use
techniques.

Amamra et al. 2013 [5], Smartphone malware detection: From a survey to-
wards taxonomy, reviews the state-of-the-art methods for detecting smartphone
malware. These methods have been organised into a taxonomy using three
rules. These guidelines were deduced and assembled via a literature review
of its own([6], [7], [8], [9], [10], [11]). Reference behaviour, analytic method-
ology, and malware behaviour depiction are the rules. Reference behaviour
rule categorises two primary groups of Smartphone malware detection tech-
niques: signature-based and anomaly-based. Then, implications are determined
for these classes in accordance with the analysis method rule and the malware
behaviour representation rule.

Alqahtani et al. 2019, A Survey on Android Malware Detection Techniques
Using Machine Learning Algorithms [12], focuses on machine learning-based
classifiers and analyses the state of the art in Android malware detection tech-
niques.

The permission-based detection methodology and the signature-based detec-
tion strategy are the two main methods used to detect static Android malware
in Samra et al., A survey of Static Android Malware Detection Techniques [13].
It is a comparative study, thus anybody researching this subject should find
it useful. The study uses precise parameters to highlight the similarities and
differences as well as the accuracy of significant published studies.

Mobile attackers have increased as a result of the quick rise in smartphone use.
The majority of the time, dishonest applications have malicious code inside of
them that can destroy both the hardware and the software. These dangerous
applications or malware are frequently made to interrupt the device or collect
data from it. In an effort to stop these issues, several techniques are suggested.
Gyamfi et al. 2019 [14], compares the most widely used and most modern
strategies and recommend the most effective.

3



4 Work Done / Proposed Method

Initial work involved understanding Wireshark. In a capture, Wireshark can
automatically resolve IP addresses to domain names, although this feature isn’t
enabled by default. Once this option is enabled, domain names shall be vis-
ible instead of IP addresses. However this pollutes the captured traffic with
additional DNS requests since Wireshark looks up each domain name. Wire-
shark also supports automatic capturing of network traffic. A revolutionary
feature enables capture of traffic from remote computers. Remote capture en-
ables Wireshark to capture traffic from a router, server, or another computer in
a different location on the network. Although irrelevant to further work done in
the internship, Wireshark has a Firewall Access Control List (ACL) tool that
enables the user to create firewall rules for a firewall to the network.

Another tool that came in handy was the python library of Scapy. It can
send packets over the wire, collect them, match requests and responses, forge
or decode packets of many different protocols, and do a lot more. The majority
of traditional activities, such as scanning, tracerouting, probing, unit testing,
assaults, or network discovery, can be handled with ease using Scapy. Hping,
arpspoof, arp-sk, arping, p0f, and even some features of Nmap, tcpdump, and
tshark can be replaced by it. Useful in writing quick scripts for the analysis of
capture (.pcap) files.

Next came the need for a library to visualise dynamic graphs. Essentially,
dynamic graphs are a discrete sequence of static graphs. They can be used to
model occerences ranging from Protein-Protein interactions to sports tourna-
ments’ standings’ evolution. Xu et al. 2016 [15] present a brand-new graph-
based representation for each feature vector representation in their work ti-
tled ”Dynamic Android Malware Classification Using Graph-Based Represen-
tations”. A variety of methods can be used to classify malware for the Android
ecosystem. Dynamic analysis based on system call invocations captured during
the execution of Android applications is a significant technique that has gained
traction recently. System calls are typically converted into flat feature vectors
for dynamic analysis, which are then fed into machine learning algorithms for
categorization.

5 Experiments and Results

Malware detection tools for Android are widely available. Static analysis, dy-
namic analysis, and hybrid analysis are the most widely used mechanisms. How-
ever, a lot of analytic techniques concentrate on static, dynamic, or hybrid de-
tection and infrequently take network traffic into account. Today, all attackers
use mobile networks to connect with users’ malicious apps or obtain crucial in-
formation.

4



Preprocessing

Model

Learning

Output VectorInput Vector

Data

Figure 1: Common ML algorithms with time consuming preprocessing phase

Feature Extr.

Preprocessing

Model

1D CNN + LSTM

Input Vector

Data

Figure 2: Common ML algorithms with time consuming preprocessing phase

Thus, network traffic can be used to examine Android applications. Network
traffic was employed in certain research on Android malware detection, and a
number of recently proposed methods used static analysis, dynamic analysis, or
both. (See Figure(1))

However Gohari et al. [1] looks at works that combine deep learning techniques
to examine static and network traffic aspects. It focuses on network traffic-based
detection using extracted flows from PCAP files and deep learning for malware
detection. (See Figure(2))

5



6 Conclusion and Future-Work

In this internship, a deep learning model to identify Android malware was re-
constructed. We used the CICAndMal2017 real-world dataset. We used the
CICFlowMeter programme and network traffic features to extract features to
identify malware Android. Additionally, we used CNN and CNN-LSTM deep
learning models to analyse the dataset. We then contrasted our findings with
those of other algorithms in the literature [1]. According to the experimen-
tal findings (as presented in [1] and reconstructed), CNN-LSTM provides the
highest level of binary classification precision for malware. The original paper
contrasted these findings with those of other studies, some of which used static
attributes, and found that the results using CNN-LSTM were superior. We used
all of the network flow features as well as detection based on network traffic.
Both network flow features as well as network-traffic based detection were used
in the model proposed in [1].

Towards the end, we began a survey of dynamic graph-based methods for an-
droid malware detection. In this study [15] the classification abilities of inno-
vative graph-based representations and conventional feature-vector-based rep-
resentations for system call invocations are compared with each. In order to
analyse system call consumption in Android malware, their conventional his-
togram, n-gram, and Markov chain representations are first computed. Three
graph-based representations are suggested where each process is considered as
a vertex and labelled with a feature vector in order to increase the classification
accuracy of the conventional feature-vector-based representations. Then, graph
kernels are used to generate graph similarities between the graph-based repre-
sentations, which are then categorised using the SVM algorithm. The graphs
are then compressed and parallelize the computation is done using a multi-core
CPU to accelerate the graph kernel computation. The methods and results
provided in this paper were not reconstructed by us. The paragraph
is a brief but interesting recount of the techniques employed by the
author.

As future work, I am looking to explore more about the implementation of
dynamic graph techniques (or algorithms) for detection and classification of an-
droid malwares. Parallel to this summer internship, I have been writing code
for Software Heritage - An OSS Organization ([16], [17]) trying to create a
universal archive of open source software code repositories, as part of Google
Summer of Code 2022. This work has included a study of graph algorithms,
their implementation and optimization for implementation on large scale sys-
tems. While looking into Open Source graph tools, I came across Webgraph
[18] which presents a very efficient graph compression algorithm. To begin with
dynamic graph algorithms, I shall try to use the dynamic graph techniques and
models presented in [15] on the CICAndMal2017 dataset.

6



References

[1] Mahshid Gohari, Sattar Hashemi, and Lida Abdi. Android malware de-
tection and classification based on network traffic using deep learning. In
2021 7th International Conference on Web Research (ICWR), pages 71–77,
2021.

[2] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-an, and Heng
Ye. Significant permission identification for machine-learning-based an-
droid malware detection. IEEE Transactions on Industrial Informatics,
14(7):3216–3225, 2018.

[3] João Lopes, Carlos Serrão, Lúıs Nunes, Ana Almeida, and João Oliveira.
Overview of machine learning methods for android malware identification.
In 2019 7th International Symposium on Digital Forensics and Security
(ISDFS), pages 1–6, 2019.

[4] Mahima Choudhary and Brij Kishore. Haamd: Hybrid analysis for an-
droid malware detection. In 2018 International Conference on Computer
Communication and Informatics (ICCCI), pages 1–4, 2018.

[5] Abdelfattah Amamra, Chamseddine Talhi, and Jean-Marc Robert. Smart-
phone malware detection: From a survey towards taxonomy. In 2012 7th
International Conference on Malicious and Unwanted Software, pages 79–
86, 2012.

[6] Tibra Alsmadi and Nour Alqudah. A survey on malware detection tech-
niques. In 2021 International Conference on Information Technology
(ICIT), pages 371–376. IEEE, 2021.

[7] P Vinod, R Jaipur, V Laxmi, and M Gaur. Survey on malware detection
methods. In Proceedings of the 3rd Hackers’ Workshop on computer and
internet security (IITKHACK’09), pages 74–79, 2009.

[8] Peyman Kabiri and Ali A Ghorbani. Research on intrusion detection and
response: A survey. Int. J. Netw. Secur., 1(2):84–102, 2005.

[9] Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral detection of mal-
ware: from a survey towards an established taxonomy. Journal in computer
Virology, 4(3):251–266, 2008.

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[11] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A
survey on security for mobile devices. IEEE communications surveys &
tutorials, 15(1):446–471, 2012.

7



[12] Ebtesam J. Alqahtani, Rachid Zagrouba, and Abdullah Almuhaideb. A
survey on android malware detection techniques using machine learning
algorithms. In 2019 Sixth International Conference on Software Defined
Systems (SDS), pages 110–117, 2019.

[13] Aiman Ahmad Abu Samra, Hasan N. Qunoo, Fatma Al-Rubaie, and Ha-
neen El-Talli. A survey of static android malware detection techniques.
In 2019 IEEE 7th Palestinian International Conference on Electrical and
Computer Engineering (PICECE), pages 1–6, 2019.

[14] Nana Kwarne Gyamfi and Ebenezer Owusu. Survey of mobile mal-
ware analysis, detection techniques and tool. In 2018 IEEE 9th
Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), pages 1101–1107, 2018.

[15] Lifan Xu, Dongping Zhang, Marco A. Alvarez, Jose Andre Morales, Xudong
Ma, and John Cavazos. Dynamic android malware classification using
graph-based representations. In 2016 IEEE 3rd International Conference
on Cyber Security and Cloud Computing (CSCloud), pages 220–231, 2016.

[16] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and
how to preserve software source code. In iPRES 2017: 14th International
Conference on Digital Preservation, Kyoto, Japan, 2017.

[17] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The software
heritage graph dataset: Large-scale analysis of public software develop-
ment history. In MSR 2020: The 17th International Conference on Mining
Software Repositories, pages 1–5. IEEE, 2020.

[18] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compres-
sion techniques. In Proceedings of the 13th international conference on
World Wide Web, pages 595–602, 2004.

8


